
A CommandCompletion.txt Replacement
for TeXShop

Herbert Schulz
herbs@wideopenwest.com

Introduction

TeXShop, v1.34 and later, has a feature that allows completions or substitutions (ab-
breviations) for a set of characters bounded on the left by a Word Boundary Character1

with the use of the ‘ ’ (Escape) key.
The enclosed CommandCompletion.txt or RCommandCompletion.txt file is a re-

placement for the file found in the ~/Library/TeXShop/CommandCompletion/ direc-
tory. It adds many commands and abbreviations for the most commonly used LATEX2ε
commands as well as variations for optional arguments and *-variants. The entries are
ordered so that the most often used variations come first when the key is pressed2.
If the first completion/abbreviation doesn’t match what you want continue pressing
the key to get variations and other matches. Eventually you will return to the original
characters you typed.

Completions/abbreviations often contain bullet characters, ‘•’, called “Marks”, as
placeholders for command arguments or to easily get to the end of an environment.
Skipping forward and backward to these “Marks” is done by the enclosed Applescript
Macros.

Most of the abbreviations were inspired by those used in the FasTEX
3 set used with

TypeIt4Me4.
Re-arrange the file entries to suit your needs. Feel free to delete commands you

never use. Add commands or abbreviations using the ones in the file as examples.
This is an ongoing personal project and you can expect additions and changes as

time goes on. I would appreciate any ideas, comments, wish lists, bug reports, etc.,
from anyone that tries using this version of CommandCompletion.txt.

Installation

CommandCompletion.txt

If you’ve already made changes to your CommandCompletion.txt file rename it be-
fore substituting the replacement file. You can copy any changes you made to the re-

1The Word Boundary Characters are space, tab, linefeed(newline), period, comma, semicolon, colon, {, },
(,) or \ (actually the TeX Command Character which can vary in different implementations). The { and \
also become part of the expansion.

2If you open the CommandCompletion.txt file using the Format->Completion->Open Completion
File... menu item, and possibly other situations, the search direction through the list sometimes
reverses. You can then use - to search through the other way.

3FasTEX was developed by Filip G. Machi, Jerrold E. Marsden and Wendy G. McKay. For more information
see the FasTEX web page, <http://www.cds.caltech.edu/~fastex/>.

4TypeIt4Me, by Riccardo Ettore, is an input method that allows abbreviation replacement in most OS X
programs. See the TypeIt4Me web page, <http://www.typeit4me.com/>, for more information.

placement later. You can always regenerate the original by emptying the ~/Library/
TeXShop/CommandCompletion/ directory and restarting TeXShop.

One thing to note: under OS X 10.2 TeXShop scanned the file for completions from
top to bottom; under OS X 10.3 and 10.4 (on my system) it seems to scan the file from
bottom to top. To test which way your system is scanning the file:

1. Use the enclosed CommandCompletion.txt file (this is the one I use for OS X 10.3
and 10.4) and type \use and then the key in a new document. You should get
\usepackage{} with the cursor between the braces. A second press of should
give you \usepackage[]{•} with the cursor between the square brackets.

2. If you get these in reverse order the file is being scanned from top down. You
need to use the RCommandCompletion.txt file. Delete the leading R and replace
the original file with it. Try the test again; it should give you \usepackage{}
first and on the second the second form.

Applescript Macros

Add the following two Applescripts to the macros menu and assign convenient key-
board shortcuts to each one; I use - - F (Ctl-Cmd-F) and - - G5. Then you skip
across argument boundaries and to the end of environments quickly6 by executing
the macros.

--AppleScript direct
--Remove the ‘direct’ for TeXShop v1.34
--Next "Mark"
--2005-10-10
set searchString to "•"
try
tell application "TeXShop"
activate
set searchOffset to (offset of selection of front document)
if (length of selection of front document) > 0
set searchOffset to (searchOffset + 1)

end if
tell front document
set firstOccurrence to (search for searchString starting from searchOffset)

end tell
if firstOccurrence > 0 then
set offset of selection of front document to (firstOccurrence - 1)
set length of selection of front document to (number of characters of contents of searchString)

-- set content of selection of front document to ""
end if

end tell
end try
-- end of script

--AppleScript direct
--Remove the ‘direct’ for TeXShop v1.34
--Previous "Mark"
--2005-10-10
set searchString to "•"
try
tell application "TeXShop"
activate
set searchOffset to (offset of selection of front document)
tell front document
set firstOccurrence to (search for searchString searching backwards true starting from searchOffset)

5I was using - - D, which I find easier to type, but that keystroke is now being used by OS X 10.4 for
Dictionary Lookup.

6Well, not very quickly with versions of TEXShop before 1.35, Sigh. . . .

end tell
if firstOccurrence > 0 then
set offset of selection of front document to (firstOccurrence - 1)
set length of selection of front document to (number of characters of contents of searchString)

-- set content of selection of front document to ""
end if

end tell
end try
-- end of script

By default the bullet character, ‘•’, is obtained by pressing -8 on English keyboards.
You can copy and paste the scripts from the enclosed text file, Applescripts.txt.

To add the macros go to TeXShop’s Macro->Open Macro Editor... menu com-
mand. For each macro in Applescripts.txt:

1. Choose New Item, paste a copy of the macro from the Applescripts.txt file
into the Content: window and type its name into the Name: window.

2. Assign a convenient keystroke; ‘f’ or ‘g’ and check the Control box to get - - F
and - - G respectively.

3. Drag the macros where you want them to appear in the Macros menu. I added
a separator between the Applescripts and Begin/End and put both of the com-
mands between them so they are set off from the rest of the commands.

4. Save the results.

5. Check that everything is working by adding some commands using Command
Completion and executing the macros.

As given above the macros select the next/previous ‘•’ but don’t delete it. Immedi-
ately entering any text will than replace the ‘•’ with that text. If you use many nested
environments this usually means having to use the ‘ ’, delete key, to eliminate one or
more ‘•’ that denote the end of an inner environment. To have the ‘•’ deleted before
entering text un-comment the line

-- set content of selection of front document to ""

in the macros given above by removing the “--” from the start of the line. I actually
have both versions of the macros on my system and assign the version that also deletes
the ‘•’ an extra ‘ ’ for its keystroke; e.g., - - - F runs Next "Mark" (Del).

I also added a tiny macro that inserts a ‘•’ directly and called it Insert "Mark"
because I use TeXShop’s “auto completion” to substitute ‘\textbullet’ for ‘•’ as I
type.

Usage

Command Completion

A typical use of command completion is to set up environments. To do this type \b
and the ; this should get you \begin{. Then start to type the environment name; e.g.,
eq and the will give

\begin{equation}
<- cursor
\end{equation}•
while the next gives eqnarray followed by it’s *-variant. After entering your equa-
tion text at the cursor run the Next "Mark" macro and the cursor will select (and
possibly delete, if so configured) the ‘•’ so you can start to type following text.

The macros are also handy for commands that take multiple arguments. For exam-
ple, to create a new command with an optional argument type \new and then three
times to get

\newcommand{}[•][•]{•}
with the cursor placed within the first set of braces. After entering the new command’s
name use the macro to jump to the next argument, etc.

Abbreviations

In addition to command completion there also exist many abbreviations for com-
mands. The principal difference is that the abbreviations are not just the start of a
command name. For example typing benu and then at the beginning of a line will
produce the complete enumerated list environment:

\begin{enumerate}
\item
<- cursor
\end{enumerate}•
as you might expect. Abbreviations like this exist for many environments as well as
sectioning commands. Alternate command versions with one or more options or *-
versions have names that end with ‘o’ (one or two) or ‘s’ respectively: e.g., sec and
two presses of or secs and a single at the start of a new line give \section*{}
with the cursor between the braces. By the way, After typing the text for the first item,
typing it and on a new line will generate another \item with the cursor on the line
below it; continued presses of will give \item[] with the cursor between the square
brackets and a “Mark” on the following line, \textit{} with the cursor between the
braces and finally \itshape before returning to the original it.

You must remember to have one of the Word Boundary Characters before the use
or the substitution won’t operate properly. This a not a problem with environments
and sectioning commands, since you usually start them on a new line, but can be for
other abbreviations. Therefore many abbreviation also have a ‘\’ version; e.g., `tt and

will not expand properly since the ‘`’ isn’t a Word Boundary Character while `\tt
and will expand to `\texttt{} with the cursor between the braces.

Many of the Greek characters and in-line math versions of the Greek characters
have abbreviations with the following rules:

1. The abbreviations for Greek characters all start with an ‘x’ and a notation for the
character: e.g., xa or \xa7 and give \alpha.

2. The var version of several Greek characters start with ‘xv’ and the notation for
the character: e.g., xth gives \theta while xvth and gives \vartheta.

3. To get capitals for some letters use an ‘xc’: e.g., xg gives \gamma while xcg gives
\Gamma.

4. Finally, preceding by a ‘d’ gives the following Greek character as an in-line math
equation: e.g., dxcd gives \(\Delta\).

Abbreviations will be completed and cycle through matches just like the com-
mand completions: e.g., both the abbreviation newcoo (note the ‘oo’ at the end of
the abbreviation) and or newc followed by three key presses on a new line give
\newcommand{}[•][•]{•}, the \newcommand with two optional arguments. There are
alternate abbreviations for some commands: e.g., ncm gives the same result as newc.

7All of the Greek character abbreviations have \ versions.

I suggest that you read through the CommandCompletion.txt file to see what abbre-
viations are available; all lines with ‘:=’ are abbreviations. Naturally, you can change
them to suit your needs and add and delete others.

Other Environments

Environments that aren’t built into the CommandCompletion.txt file can always be
added if you use them a lot but there is an alternative for occasional use. Built into the
completion algorithm is a way to complete environments. First press \b and to get
\begin{, enter the environment name and the closing } and then again; the closing
\end{} with the corresponding environment name will be generated on a separate
line.

Actually, it is much easier to edit the Begin/End macro to have the returns, etc.,
the way you’d prefer add the “Mark” at the end and assign - - B to that macro. Then
you need only type the environment name, select it, type - - B and you’ll have the
environment.

Technical Stuff

If you are adding items to the CommandCompletion.txt there are a few things you
should know about its structure:

• Each environment has three entries: a completion that starts with a leading ‘{’
and the environment name; two abbreviations that have an abbreviation name
without a backslash (\) and the same abbreviation with the backslash.

• You should add all the variations with slightly different endings for the abbrevi-
ations. I use an ‘o’ at the end of an abbreviation if that variation has an optional
argument, ‘oo’ for two optional arguments, ‘s’ for starred forms of commands,
etc.

• The order of similar items in the file does make a dramatic difference in the
order in which items are found; items placed later (or earlier if you needed the
RCommandCompletion.txt file) will be found earlier. E.g., the order of items
obtained when you press \b and then depends purely on the order of matches
in the CommandCompletion.txt file.

I’d suggest that you take a look in the CommandCompletion.txt file for examples.

Try it. . . I hope you like it.

Good Luck,
Herb Schulz
(herbs@wideopenwest.com)

