
A Beginner’s Guide
to

File Encoding & TEXShop
v0.4.2–2018/06/11

H. Schulz & R. Koch

1 Introduction

A common problem TEXShop users face when opening and typesetting files is that the text dis-
played in the Source or in the Typeset Document does not agree with what should be there;
characters are scrambled and improper characters appear. This is usually an encoding problem —
the Editor or TEX or both do not interpret the input correctly. This document is meant as a first
introduction to encoding. It is definitely not meant as an exhaustive document, and deals only
with the most common encodings in use today.

2 What is File Encoding?

While we usually think of the .tex source file as containing characters, in reality this source, like
all computer files, is just a long stream of whole numbers, each between 0 and 255. Computer
scientists call these whole numbers bytes.

All other computer data must be encoded in one way or another into bytes. The most common
encoding of ordinary text into bytes is called ASCII; it encodes all the characters found on an
ordinary American typewriter. For instance, the characters ‘A’ through ‘Z’ are encoded as 65
through 90, the characters ‘a’ through ‘z’ become 98 through 123. The space character is encoded
as byte 32, and numerals, parentheses, and punctuation characters encode as other bytes.

Originally, TEX required ASCII input. While this was sufficient in the United States, it proved
cumbersome in Western Europe, where accents, umlauts, upside down question marks, and the
like are used; macros were needed to construct those characters and that broke hyphenation.
More difficult problems arose when TEX was used in the Near and Far East.

The ASCII encoding only uses bytes between 0 and 127. Thus the door was open to encode
other characters using bytes 128 through 255. Many different single byte encodings now exist to
display additional characters using these bytes.

3 Extending the Character Table

The three most used extended single byte encodings on the Mac are MacOSRoman, IsoLatin1 and
IsoLatin9.1

The MacOSRoman encoding is left over from the days before OS X and, as expected, exclusive
to Mac computers. Its use is no longer encouraged.

IsoLatin1 encoding extends the ASCII encoding with the accented characters used in Western
European languages.

IsoLatin9 adds a Euro symbol, €, to the IsoLatin1 encoding along with a few other changes.

1We will use the notation used for the TEXShop encoding directive in this document. See the table in section (8)
starting on page 5.

1



3.1 Other Encodings Used with TEX

Additional encodings include IsoLatin2 for central European languages, IsoLatin5 for Turkish
and Iso8859-7 for Greek. Several different encodings are available for Russians and others using
Cyrillic. Additional encodings are available for Korean and Chinese, but Far Eastern languages use
far more than 256 symbols, so these encodings are not very satisfactory.

3.2 Windows Stuff

Windows Latin 1 is a version of IsoLatin1 with some characters in different code locations as
defined by Microsoft Corp. You can run into this encoding when you get files from folks running
Windows.

3.3 A Crucial Flaw

The various encodings were developed independently by computer companies as their products
were sold in more and more countries.

Unfortunately, text files do not have a header listing the encoding used to generate the file.
Thus there is no way for TEXShop to automatically adjust the encoding as various files are input.
Some text editors have built-in heuristics to try to guess the correct encoding, but TEXShop does
not use these heuristics because they work only 90% of the time and an incorrect guess can lead
to havoc.

4 Unicode

As the computer market expanded across the world, computer companies came to their senses
and created a consortium to develop an all-encompassing standard, called Unicode. The goal
of Unicode is to encode all symbols commonly used across the world, including Roman, Greek,
Cyrillic, Arabic, Hebrew, Chinese, Japanese, Korean, and many others. Unicode even has support
for Egyptian Hieroglyphics and recently added support for Mathematical Symbols.

All modern computer systems, including the Macintosh, Windows, Linux and Unix, now
support Unicode. Internally, TEXShop and other Macintosh editors describe characters using
Unicode and can accept text that is a combination of Roman, Greek, Cyrillic, Arabic, Chinese,
and other languages. TEXShop even understands that Arabic, Hebrew, and Persian are written
from right to left. To input these extra languages, activate additional keyboards using the System
Preferences Keyboard Pane. This Pane changed in recent versions of OS X; in El Capitan, select a
keyboard on the left, or click ‘+’ below the list to see a list of additional languages and add their
keyboards.

Because there are far more than 256 symbols, Unicode describes symbols using much larger
integers, using more than one byte. Unicode defines the “internal” structure of these numbers,
but gives several different ways to write the symbols on computers. The most popular Unicode
encoding is UTF-8, but UTF-16 and others are also available.

The great advantage of UTF-8 is that ordinary ASCII characters retain their single byte form in
the encoded file. Consequently, ordinary ASCII files remain valid as UTF-8 files. With most single
byte encodings like IsoLatin1, IsoLatin9, etc., any sequence of bytes forms a legal file. If you open
such a file with the wrong encoding, the file will appear as usual, but some of the symbols will
be wrong. If someone in Germany using IsoLatin9 collaborates with someone in the U.S. using
MacOSRoman, and their paper is written in English, they may not notice the mismatch until they
proofread the references and discover that accents and umlauts have gone missing.

However, not all sequences of bytes form legal UTF-8 files, because non-ASCII symbols are
converted into bytes using a somewhat complicated code. In the previous example, if the German
collaborator uses IsoLatin9 and includes non-ASCII characters, such as those with umlauts, in the

2



document and the American collaborator uses UTF-8 TEXShop will report an error when it tries to
open the IsoLatin9 file in UTF-8. TEXShop will then display an error message and offer to open the
file in a “fallback” single byte encoding, currently IsoLatin9 (not configurable).

On the other hand both of the authors of this document use UTF-8 Unicode as our default
encoding, turning that message to our advantage. UTF-8 encoding preserves everything typed
in TEXShop, so there are no puzzling character losses. HTML and other code is usually saved
in UTF-8, so TEXShop can be used as a more general text editor. Moreover, if a TEX file from an
external source is not in UTF-8, we get that warning. The trick is then to let TEXShop open the file
in the “fallback” encoding, IsoLatin9, and examine the file for an inputenc line which tells you
what encoding was actually used. Then close the file without making any changes and re-open it
using the Open dialog and manually choose the correct encoding. Once the file is open with the
correct encoding you may add the TEXShop encoding directive line for that encoding and save it
for future use.

Using UTF-8 Unicode has become so advantageous that TEXShop 4.00 and later use UTF-8

Unicode as the default, out of the box2, encoding.
All of the encoding methods discussed here, including Unicode, ignore italics, underlining,

font size, font color, etc. They just encode characters. It is up to users to specify additional
attributes in some other way. For example, when Apple’s TextEdit program is used in Plain Text
mode, a user can change the font or font size for an entire document, but not for individual
sections of the document. If the document is saved to disk and then reloaded, the font changes
are lost. On the other hand, a word processor like Microsoft Word or Apple’s Pages, has much
more control over fonts, font size and the like. These programs output text with a proprietary
coding only readable by that program. But the file preserves the extra attribute information.

While all modern computers support Unicode, their particular fonts have symbols for only a
small portion of the Unicode world. Many fonts have a special character, often a box, to indicate
that a character is missing. Thus if you want to write in Arabic or Hebrew, you must choose a font
which contains these symbols. Modern computers support a great range of symbols because the
computer business covers the world, but obscure Unicode symbols may not be covered by any
single provided font.

5 Two Sides of the Story: TEXShop and TEX

Once a user selects an appropriate encoding, the user must configure both TEXShop and the
appropriate TEX engine to use that encoding. Different sets of problems arise with these two tasks.

Users in the United States and other English speaking countries can often ignore encodings
altogether. The default TEXShop encoding supports ASCII, and TEX and LATEX have supported ASCII

from the beginning. So there is nothing to do.
Users in Western Europe must take slightly more care. The current default TEXShop encoding,

UTF-8 Unicode, will be sufficient for their needs. But they must configure TEX and LATEX as
described below, and carefully choose fonts which support accents, umlauts, and the like. The
required steps are easy.

Users in Russia and Eastern Europe must take similar steps, but the authors of this paper are
not knowledgeable about correct configurations, so we suggest getting help from friends already
using TEX.

Users in the Far East and Middle East, and scholars working with multi-language projects,
will need to consult other sources for detailed configurations. These users should certainly
examine X ETEX and LuaTEX, because these extensions of TEX use Unicode directly and are much

2If you switch to the latest TEXShop version and have already reset the default encoding in TeXShop→Preferences
your selection will be maintained.

3



more capable of handling languages where Unicode becomes essential. Both X ETEX and LuaTEX
can typeset almost all standard TEX and LATEX source files, but have additional code for Unicode
support. One big problem with these languages is that appropriate fonts must be chosen which
support the languages. To simplify that problem, both X ETEX and LuaTEX allow users to use the
ordinary system fonts supplied with their computer.

6 Telling TEXShop what encoding is used to Load and Save Source Files.

To set the default TEXShop encoding, open TEXShop Preferences. Select the Source tab. In the
second column, find the Encoding section. This section contains a pull down menu; select the
desired encoding from this menu. Select Western (ISO Latin 9) to get the IsoLatin9 encoding,
useful in English speaking countries and Western Europe. You must select Unicode (UTF-8), the
current default, or Unicode (UTF-16) if you want to preserve everything typed into the TEXShop
editor. If you pick any other encoding, there may be characters you can type in TEXShop which
will be lost if you Save and then re-Load. On the other hand, UTF-8 may not work well with certain
LATEX packages, as explained later.

TEXShop has a mechanism to set the encoding of a particular file independent of the user’s
default choice, or of choices in the Load and Save panels. To set the encoding used to read or write
a particular file to UTF-8, add the following line to the first twenty lines of the top of the file:

% !TEX encoding = UTF-8 Unicode

The easy way to do this is to select the Macro command Encoding. A dialog will appear from
which an appropriate encoding can be selected, and after the dialog is closed, the line will be
placed at the top of the file, replacing any existing encoding line.

If such a line exists, the indicated encoding will be used, overriding all other methods of setting
the encoding, unless the option key is held down during the entire load or save operation.

Many users in Western Europe prefer to set IsoLatin9 as their default encoding so they can
easily read files from collaborators, but include the line setting encoding to UTF-8 in file templates
used to create files, so that their own files are encoded in UTF-8.

It is also possible to set the encoding used to read a file by Opening the file explicitly from
within TEXShop. The resulting open dialog has a pulldown menu at the bottom selecting the
encoding to be used for that particular file.3 (Note that the “% !TEX encoding =” line overrides
this command.)

Explicitly Saving a file from within TEXShop produces a Save Dialog with a similar pulldown
menu to set the encoding.

NOTE: you can’t easily change the encoding of a file. The best thing to do is copy the whole
document into a new one and save that with the correct encoding. Using the TEXShop directive
before saving the new file the first time is definitely recommended.

7 Telling LATEX about File Encodings

Your typesetting engine needs to ‘know’ the encoding used to save each source file so the input
source and the output glyphs are synchronized. For ordinary LATEX, this is usually done by including
a command like the following one in the header of the source:

\usepackage[latin9]{inputenc}

Typical values for other encodings are given in the short table at the end of this document.
This line is not needed when the source encoding is ordinary ASCII.

3Under El Capitan you must first press the Options button to get to the pulldown menu.

4



One of the legal values for encoding with inputenc is utf8. This line works in Western Europe,
but not in situations requiring deep use of Unicode. When in doubt, it is useful to read the
inputenc documentation. To do that, go to the TEXShop Help menu, select Show Help for Package,
and fill in the requested Package with inputenc.

Users in Western Europe usually use four “related” commands in the header. Here are these
four lines for users in Germany.

\usepackage[german]{babel}

\usepackage{lmodern}

\usepackage[T1]{fontenc}

\usepackage[latin9]{inputenc}

The first of these lines asks LATEX to use German conventions for dates, hyphenation, and the
link.

The second line tells LATEX to use the Latin Modern fonts. These fonts agree with Donald
Knuth’s Computer Modern fonts in the first 128 spots, but include additional accents, umlauts,
upside down question marks, and so forth used in Western Europe.

The third line tells LATEX the connection between the characters in the file and actual glyphs
(i.e., the physical representation of the characters in the final document).

As explained above, the final line tells LATEX which encoding was used for the source file.
Users interested in more details should consult the documentation for babel, lmodern, and

fontenc using TEXShop’s Show Help for Package item in the Help Menu. The documentation is
interesting, going into considerable historical detail about the evolution of font design in TEX.

8 Encodings understood by TEXShop.

The table given below shows the corresponding entries for some popular file/input encodings
used with LATEX in TEXShop.

The ‘Open/Save Dialogs’ column shows the designation for the encodings in TEXShop’s
Open/Save Dialogs; you may have to click on the Options button to display the popup menu for
encodings.

The ‘Directive’ column gives the designation used in TEXShop’s encoding directive,

% !TEX encoding = xxxxx

where xxxxx is the designator you wish to use. If this line is in place before you first Save your
source file TEXShop will automatically save the file with the designated encoding. TEXShop will
also automatically Open the file with that encoding when Double-Clicked. We suggest you create
a Template which contains the directive and use that to create new documents.

The ‘inputenc’ column gives the optional argument for the inputenc package. As with the
Directive, I suggest you create a Template which has the proper inputenc line for the corresponding
encoding in the directive.

5



Table 1: Partial Encoding List

TEXShop TEXShop LATEX
Open/Save Dialogs Encoding Directive inputenc

Unicode (UTF-8) UTF-8 Unicode utf8
Western (Mac OS Roman) MacOSRoman applemac
Western (ISO Latin 1) IsoLatin latin1
Central European (ISO Latin 2) IsoLatin2 latin2
Turkish (ISO Latin 5) IsoLatin5 latin5
Western (ISO Latin 9) IsoLatin9 latin9
Mac Central European Roman Mac Central European Roman macee
Western (Windows Latin 1) Windows Latin 1 ansinew or cp1252

6


	Introduction
	What is File Encoding?
	Extending the Character Table
	Other Encodings Used with TeX
	Windows Stuff
	A Crucial Flaw

	Unicode
	Two Sides of the Story: TeXShop and TeX
	Telling TeXShop what encoding is used to Load and Save Source Files.
	Telling LaTeX about File Encodings
	Encodings understood by TeXShop.

